CASE STUDY: ENVIRONMENTAL MONITORING USING REMOTE OPTICAL SENSING [OP-FTIR] TECHNOLOGY AT AN INDUSTRIAL WASTEWATER TREATMENT PLANT

Tinker Air Force Base, Oklahoma

Freddie E. Hall, Jr., PhD
Chemical Engineer
OKLAHOMA CITY AIR LOGISTICS CENTER
ENVIRONMENTAL MANAGEMENT DIRECTORATE
POLLUTION PREVENTION BRANCH
INVESTIGATION OVERVIEW
Outline

- Introduction
- Project Overview
- Distinctive Elements of Effort
- Air Emission Model
- Air Dispersion Model
- Coupled Model Validation / Calibration Process
- Coupled Model Results
- Comparison to Remote Optical Monitoring System
- Application to Risk Assessment
- Summary and Conclusions
Tinker AFB covers 5,031 acres
 • Only 200 acres are undeveloped

765 Facilities
 • 15.3M feet\(^2\) of industrial operations

Three Creek Systems

700-plus Air Emission Sources

200 Underground Storage Tanks

11-Miles Industrial Wastewater Lines

Three Wastewater Treatment Plants

36 Restoration Sites

Provides Logistics Support to USAF Weapon Systems
 • B-1, B-52, E-3 Sentry, C/KC-135 aircraft
Tinker AFB performs Depot Level Maintenance

Process Assessment identified four Primary Processes
- Depainting, Painting, Electroplating & Cleaning
- Majority of processes discharge to an on-base treatment facility

Regulatory Requirement to quantify Air Emissions from Industrial Wastewater Treatment Facility [IWTF]
- Toxic Release Inventory and Air Emission Inventory
- Clean Air Act Title V permit requires source & emission information
- POTW NESHAP requirement

Efforts focus on Methylene Chloride and Phenol
- Both are CAA Title III Listed Hazardous Air Pollutants [HAPs]
- VOC and semi-VOC examples
- These chemicals account for majority of purchases / releases
Investigation will be presented in four Major Tasks

- Coupling of Emission and Dispersion Models represents a Cost-Effective and Environmentally-Responsible Approach
 - Coupling refers to sequential use of models [output is input]
 - Meet impact predictions, regulatory reporting requirements, and pollution prevention needs
 - Estimate emissions from IWTP process units
 - WATER8 air emission model developed by EPA
 - Estimate atmospheric dispersion concentrations
 - ISC-ST3 air dispersion model designed by EPA
 - Validate predictive accuracy of the coupled model
 - Comparison of coupled model predictions to field data
 - Comparison of coupled model predictions to OP-FTIR data
 - Demonstrate potential applications to include Risk Assessment
Distinctive Elements of Investigation

- Combined use of WATER8 and ISC-ST3
- Literature directed to specific applications
- Coupled model compared to MAAC
- Literature limited to single emission sources
- Literature focused at municipal wastewater treatment
- Detail and size of periodic canister data
- Investigation of three remote optical paths
- Multiple retroreflectors that bend optical path
- Evaluation of chemical depainting agents
- Coupled model used in risk assessment
- Completeness and comparative analysis
COUPLED MODEL OUTPUT
Maximum Methylene Chloride Concentrations, PPB
ENVIRONMENTAL MONITORING
Location of Periodic Canister Data

- RCRA Facility Investigation Data [A1-A13]
- 1993 Battelle Study [A1, A2, A3]
- OC-ALC Bioenvironmental Data [A1, A2, A3]
- Coupled Model Predictions [1984-91]
Open-Path Monitoring System measures Atmospheric Emissions

- Directing infrared optical energy along physical path that crosses downwind of emission source plume
- OP-FTIR system used for environmental monitoring

Pollutants modify Spectral Signal

- Allows for determination of identity and quantity of pollutants

OC-ALC Application consist of OP-FTIR Spectrometer

- Operated in monostatic configuration
- Designed to measure atmospheric dispersion concentrations along five distinct optical paths
- Primarily concerned with fenceline concentrations \([P_1, P_2, P_3]\)
- System installed in 1995 and operational roughly three months
 - 36 percent of collected FTIR data considered unusable
OPEN PATH MONITORING SYSTEM
Remote OP-FTIR Optical Monitoring Pathways

PC OW-N ST-W ST-E B62516 MIX SCC-N SCC-S BIO SC-N SC-S

OW-S D1 D2 P1 A1 A11 A2 P2 A3 P3 A4 A5 P4 P5
COUPLED MODEL OUTPUT
Maximum Methylene Chloride Concentrations, PPB
OPM SYSTEM COMPARISON

Methylene Chloride--Optical Path P1

Coupled Model Predictions [1984-93]
FTIR Predictions
RCRA Facility Investigation [A1, A11, A2]
1993 Battelle Study [A1 & A2]
OC-ALC Bioenvironmental Data [A1 & A2]
OPM SYSTEM COMPARISON
Methylene Chloride -- Optical Path P2

Coupled Model Predictions [1984-93]
FTIR Predictions
RCRA Facility Investigation [A3]
1993 Battelle Study [A3]
OC-ALC Bioenvironmental Data [A3]
OPM SYSTEM COMPARISON
Methylene Chloride--Optical Path P3

Coupled Model Predictions [1984-93]
FTIR Predictions
RCRA Facility Investigation [A4 & A5]
COUPLED MODEL OUTPUT
Maximum Phenol Concentrations, PPB

X-Coordinate, West to East

Y-Coordinate, South to North
OPM SYSTEM COMPARISON

Phenol--Optical Path P1

Coupled Model Predictions [1984-93]
FTIR Predictions
RCRA Facility Investigation [A1, A11, A2]
1993 Battelle Study [A1 & A2]
OC-ALC Bioenvironmental Data [A1 & A2]
OP-FTIR Ineffective Method of Predicting Field Data

- FTIR over-predicts field data along all three optical paths
- FTIR data gathered over 12 months
- FTIR over-predicts by orders of magnitude
- No visual trends for both components
- Clustering of data along optical path

Reliability of Technology

- Three months worth of data over five years
- 36% of data considered unusable

Potential Weaknesses

- Poor maintenance and oversight
- Weather data equipment and software
- No daily background spectra
- Significant water vapor impacts
CASE STUDY: ENVIRONMENTAL MONITORING USING REMOTE OPTICAL SENSING [OP-FTIR] TECHNOLOGY AT AN INDUSTRIAL WASTEWATER TREATMENT PLANT

Tinker Air Force Base, Oklahoma

Freddie E. Hall, Jr.
OC-ALC/EMPD
7701 Arnold Street, Suite 204
Tinker AFB OK 73145-9100
COM: 405-734-3114
DSN: 884-3114
EMAIL: freddie.hall@tinker.af.mil